
On the need for setpoints1

1 This work was partially funded by Microsoft Research

Rubén Altman
Departamento de Computación,

Universidad de Buenos Aires
Buenos Aires, Argentina

raltman@dc.uba.ar

Alan Cyment
Departamento de Computación,

Universidad de Buenos Aires
Buenos Aires, Argentina

acyment@dc.uba.ar

Nicolás Kicillof
Departamento de Computación,

Universidad de Buenos Aires
Buenos Aires, Argentina

nicok@dc.uba.ar

ABSTRACT
Pointcuts are currently defined in most aspect-oriented

frameworks either by way of laborious enumeration or by
referring to some structural property of the code. This coarse way
of quantifying reduces program evolvability, supposedly one of
the advantages of AOP. We believe that a strong decoupling of
concerns will only be achieved when pointcut definition
mechanisms are provided that rely on system views other than
the program code. Structure-based pointcuts must evolve into
setpoints, semantic pointcuts. It is the main purpose of this paper
to further explain this concept and to present SetPoint, an AOP
environment developed as proof-of-concept for these ideas.

General Terms
Design, Experimentation, Languages.

Keywords
Aspect-Oriented Programming, Traceability, Semantics,
Pointcut, Ontology.

1. INTRODUCTION
Quantification has been repeatedly pointed out as one

of the pillars of AOP. As stated in [1], aspect oriented
programming can be defined as the “desire to make programming
statements of the form In programs P, whenever condition C
arises, perform action A”. It is on the universe over which
predicate C ranges that we that we want to focus.

Quantification capabilities are represented by what is
widely known as pointcut declarations, i.e. sets of well-known
points during the execution of a program [2]. Pointcuts are
currently defined in most aspect-oriented frameworks either by
laborious enumeration or by referring to some structural property
of the code (which can be a combination of other, more simple
properties), such as particular naming conventions, coding
conventions and coding patterns (e.g., “create a log entry before
executing any method whose name matches the get[(a-z)*]
regular expression”). [3] exposes the unexpected consequences
of this coarse way of quantifying, concluding that “AOSD leads
to software that should be more robust with respect to evolution
because it offers better modularization, but paradoxically reduces
the evolvability because it introduces tight coupling”.
 We believe that these coupling stems not only from
the lack of obliviousness as presented in [1], (i.e. base-code
programmers not knowing that aspects will be applied to it), but
also from the fact that aspect writers need to be completely aware
of base-code details and evolution. Therefore, we call the former

requirement one-way obliviousness, and we extend the definition
of obliviousness to consider both directions. In our view (two-
way) obliviousness is the requirement that base-code
programmers must not be aware of the future addition of aspects,
and aspect programmers do not need to know structural and
syntactic particulars of the base-code or adapt their pointcuts to
changes in base-code structure or naming (refactoring).

Beginning with Section 2, we grow out of these ideas
by describing archetypical scenarios of tight coupling caused by
the use of structure-based pointcuts.

We outline in Section 3 what we term semantic
pointcuts. Section 4 briefly introduces SetPoint, our first
implementation of this idea. We conclude in Section 5,
presenting conclusions and further work on the subject.

2. ARCHETYPICAL SCENARIOS

2.1 Frameworks
Some of the problems that arise when trying to use

aspects with white-box frameworks have already been described
in [3]. If aspects need to be applied to a program based on a
black-box framework, the lack of knowledge of framework
internals would prevent the use of structure-based pointcuts.
Learning framework details is not an option, both because it
would break framework encapsulation, and because it would not
be an two-way oblivious solution. The only remaining option
would be to apply aspects only on the framework façade.

2.2 “Name explosion”
[3] already argues against refactoring as a way of

generating useful pointcut definitions. Evidently the problem
becomes harder as more aspects come into play. What is more,
the resulting base code no longer tackles only the main (i.e.
functional) concern, but is also shaped so that crosscutting-
concerns can be effectively weaved.

We could then follow strict naming conventions, so that
names describe a given concern. But problems arise. To begin
with, we are suffering from an evident lack of obliviousness.
Furthermore, the more aspects we have the more rules need to be
followed to make method names belong to the proper pointcut. In
the worst case, some rules can even be incompatible with one
another. In a typical case (i.e., adding a substring at the end of
the method name is usually enough), identifiers can become
extremely long, dramatically decreasing code legibility. We call

mailto:raltman@dc.uba.ar
mailto:acyment@dc.uba.ar
mailto:nicok@dc.uba.ar

2

this problem “name explosion” because we find it similar to the
one described in the decorator pattern [5].
 Furthermore, forcing part of a method name to signal
what aspect or aspects should be applied to it violates the
intention revealing naming rule. It is considered a coding best
practice by the Object Oriented Programming community that
method names clearly represent the intention of the method code
[6]. A good example might be taking a method named
transferAmount (that naturally conveys the functional intention
behind the method code), which becomes
transferAmount_concurrent_beginsTransaction_traced when
crosscutting concerns need to be applied on it.

2.3 Ambiguity
Any syntactic (i.e. structure-based) solution brings

about ambiguity problems. Let us suppose that we use method
names to distinguish between join points that belong to two
different pointcuts: pointcut “A” (related to the persistence
aspect) might have been written assuming that methods
beginning with set are always setters, and pointcut “B” (related
to the “user-interface” aspect) was specified considering that
those same methods refer to graphics being settled on the screen.
Coding conventions may be established to avoid this problem,
but they will introduce the one described in sections 2.3 and 2.4.

2.4 Refactoring
Consider the following simple case study:
- Class “InternetSearcher” has two subclasses, “FastSearcher”

and “CarefulSearcher”, which differ only in the searching
algorithm.

InternetSearcher

+new()

FastSearcher CarefulSearcher

Pointcut including every
FastSearcher instance creation
(calls to "FastSearcher.new()")

Figure 3: Refactoring First Scenario

- After a couple of weeks, one of the designers in the
development team realizes that using a model based on the
Strategy pattern [5] would be a good decision. Hence, the
model is changed through the use of refactoring. A
“searchAlgorithm” attribute is added to the
“InternetSearcher” class. Its value must be an instance of
one of the classes in the “SearchAlgorithm” hierarchy.

“CarefulSearchAlgorithm” and “FastSearchAlgorithm”
specialize the new “SearchAlgorithm” abstract class, while
the existing “InternetSearcher” subclasses are deleted.

Now, consider that during the development of the first stage
someone wanted to improve the performance of “FastSearcher”
by applying a “load-balancing” aspect on every “FastSearcher”
instance creation. The pointcut would become completely useless
after second-stage refactoring. The class “FastSearcher” no
longer exists. Consequently, either the pointcut writer or the
AOP environment would have to address this situation.

SearchAlgorithm

FastSearchAlgorithm CarefulSearchAlgorithm

Pointcut including every
FastSearcher instance creation
(calls to "FastSearcher.new()")

Figure 4: Refactoring Second Scenario

InternetSearcher

1 *

Useless!

The former approach forces the aspect writers to be

aware of code changes, thus violating two-way obliviousness as
we have defined it. The latter is highlighted by some works [7]
as a way to achieve better pointcut definition mechanisms. We
agree on the importance of better AOP-programming
environments, but we feel that without a real change in pointcut
definition mechanisms, better tools would become just a
transient patch.

3. TOWARDS A SOLUTION

We strongly believe that the main cause of the
preceding problems lies in the use of structure-based properties
and syntactic conventions. Intuitively, when a software engineer
thinks about applying an aspect, she thinks about “messages sent
to an object of the [data layer] handled by [referentially
transparent] methods” or “[numerical operations] whose
operands are [money] fields of [business objects] and which are
performed within the scope of a [transfer] transaction”, and not
about “methods with names satisfying the set* pattern”. She is
thinking in terms of program views and not particularly about
code itself. It therefore seems sensible enough to provide
pointcut definition mechanisms that predicate over these views.
Two main challenges arise: defining program views and relating
these views to the program code.

3.1 Program Views - Semantics
Software views are descriptions of a program that are

focused on issues relevant to a specific stakeholder, and are thus

3

written in a language she can understand. Thus they are often
expressed in a notation that provides a higher level of abstraction
than programming languages. Views may be seen as a way of
clarifying a program, exposing its meaning (with an
interpretation of meaning suitable to each specific stakeholder);
that is to say, making the program semantics explicit.

We considered two different approaches for program
views representation: general-purpose knowledge representation
languages, and a set of domain-specific languages [8]. The pros
and cons of these options are the usual ones when dealing with
general vs. purpose-specific solutions. Despite the widespread
adoption of notations to represent particular program views, such
as use-cases, software architecture description languages or
finite-state machines, we opted to explore the former option first,
so as to gain flexibility in these early prototyping stages.

3.2 Program Annotations and setpoints
We chose to link program semantics or views to base-

code through metadata elements. Code annotation mechanisms
such as the ones defined in the .NET and Java environments may
be used for this purpose. Pointcut definitions will be based on
these annotations, which must belong to a semantic model, thus
relating the program to its meaning.

We call this new kind of pointcuts setpoints (i.e.
semantic-based pointcuts). In the following section we will
describe why this approach solves the archetypical problems
presented before.

3.3 Archetypical scenarios revisited
Incompatibility problems raised by different coding

conventions imposed by an AOP framework combined with
another development framework do not exist in the presence of
setpoints, since the proposed AOP framework does not require
coding conventions to be in place.

Semantically annotated black-box frameworks can be
managed without any additional problem by the semantic AOP
framework, no matter what their internal structure looks like.
The only requirement posed by our AOP tool is that their code
should be linked to well-known semantic models (either
internally or externally).

Method names are clearly not affected by aspect
application if a semantic-based AOP tool is used. This clearly
solves the name explosion scenario.

Ambiguity is avoided as well; given the fact that
program metadata will reference concepts that belong to a
specific semantic model. Their meaning will then be uniquely
defined.

Finally, as far as refactoring is concerned, pointcut
definitions will no longer refer to a specific class name or
relationship among classes, but to class semantics. Thus, usage
of either inheritance or composition makes no difference to the
AOP framework: following the example presented in the
previous section, the pointcut definition would no longer
specifically refer to class FastSearcher, but to any classes that
have the purpose of searching the Internet prioritizing response-
time. Any refactoring that preserves this semantics would not

affect the aspect effect. Neither would the pointcut need to be
altered if other classes implementing a faster algorithm were
added, as long as they have a clearly defined semantics.

4. SETPOINT!
The Setpoint Framework, built using Microsoft’s .NET

platform, has been developed as a proof of concept for our ideas
on semantic pointcuts.

Formal ontologies [9] were used as the means to
represent different program views in a uniform way. The
framework relies on widespread W3C standards to represent
ontologies (OWL [10] and RDF [11]). These standards were
adopted to minimize the risk in the choice of a general-purpose
language: since OWL and RDF are designed to be used
throughout the semantic web [12], they have been widely tested
in the representation of dissimilar knowledge-bases. The
existence of a number of tools designed to manage W3C models
also makes it easier for us to deal with these standards, isolated
from the development of the required machinery. As ontologies
are usually applied to add semantic information to Web pages,
they seem a natural choice to do the same to program code.
Concepts described in the ontologies are later referenced in
program annotations using .NET custom attributes.

4.1 The semantic model
We rely on RDF/OWL as the means to define different

program views. Thus, every knowledge model used to represent
these views must be described in terms of RDF ontologies. The
models must then be instantiated for a specific program. This is
achieved through code annotations: the framework takes as
inputs a program and its annotations and creates the proper RDF
representations. This process, called semantication, is further
explained in the architecture section.

Previously mentioned ideas about different semantic
models for one program are summarized in the following figure:

One distinguished program view is always present: the
code itself. Like any other view, it must be translated into a
proper RDF representation. The specific resources that make up
this model are called program elements.

[view]
class myClass
{

Code perspective Architecture

perspective view model

<myClass
> <myClass,

hasAnnotation
, view>

<view>

<model>

AArrcchhiitteeccttuurree

((mmyyAApppp))

AAnnnnoottaattiioonnss

((mmyyAApppp))

PPrrooggrraamm
EElleemmeennttss

((mmyyAApppp))

AArrcchhiitteeccttuurree
oonnttoollooggyy

CCooddee
oonnttoollooggyy

<class> <component>

MyApp

4

4.2 LENDL
A Domain Specific Language called LENDL was

developed to make it easier for developers to declare advices and
pointcuts in our framework. The following code shows an
example of a pointcut definition:

pointcut MyPointcut {
 sender is [semantics://anOntology#concept1];
}

This statement is translated into C# using [13] and
finally parsed into a machine executable RDF query language
[14]. This underlying language allows querying RDF models for
the existence of relationships (either explicit or inferred ones).
Therefore, the sample pointcut is a query for the existence of an
RDF resource that relates the program element that represents
the current join point sender and the concept “concept1”, which
must have been previously defined in the ontology
semantics://anOntology. The keyword is represents a built-in
RDF concept, already defined in the environment.

The receiver and message keywords are also included
in the language, in order to predicate about the corresponding
program elements of the current join point.

4.2.1 Aspects
Any program can potentially be inserted at some point

in another program’s execution; we say then that the former
program is assuming the role of an aspect. The running code of
an aspect is therefore written using any .NET compliant
language. LENDL has a construct for declaring the protocol of
the program that will be used as an aspect, thus exposing it to the
framework as such. For example:
aspect MyAspect {
 event oneRelevantEvent;
 event anotherRelevantEvent;
}

The events must match the name of a method in the
class MyAspect, so that the runtime environment can find them
via reflection mechanisms.
The advices will then relate events and specific pointcuts:
advice myAdvice : myAspect {
 trigger oneRelevantEvent after myPointcut1;
 trigger anotherRelevantEvent before myPointcut2;
}

The syntax is straightforward: event oneRelevantEvent
must be executed after the execution of any join point belonging
to pointcut myPointcut1, and event anotherRelevantEvent must
run before the execution of any join point belonging to
myPointcut2.

4.2.2 Inference Rules
LENDL allows the addition of inference rules that

affect the specified RDF/OWL models. They modify the models
by defining new relations provided some conditions are met. The
following example shows the definition of a given inference rule:
declare CTS alias
semantics://programElements/objectOriented/CTS;
rule annotationTransitivity{
 infer B [CTS#hasAnnotation] X
 when A [CTS#hasProgramElement] B and
 A [CTS#hasAnnotation] X;

}

4.3 SetPoint Architecture
The following figure summarizes the architecture of the SetPoint
AOP framework:

A process called preweaving and the already-mentioned
semantication must be applied to assemblies intended to run
under the AOP framework. An API called PERWAPI [15] is used
as the basis to read, instrument and rewrite assemblies. These
two processes achieve the following main goals:

• Create an assembly RDF representation from its type
information (including attributes in their role of semantic
annotations). The resulting representation is included in the
assembly as an internal resource.

• Inject code to delegate message send execution to the AOP
weaver on each method call.

LENDL code must be compiled together with the ontologies
to be used (RDF/OWL models), so that they can serve as the
main input to the runtime environment.

The weaver decides in runtime which aspect must be
applied on each method call: every pointcut is evaluated to
determine whether it includes the current join point or not. The
weaver is also responsible for loading needed RDF-resources
into memory. Sesame [16], a Java knowledge database that has
been migrated to .NET by our group relying on IKVM [17], was
chosen as the appropriate library to manage models in memory.

This runtime architecture implicitly describes two important
design decisions we made, based on strong theoretical
arguments:

• The weaving is performed dynamically at runtime.

• The only known join points are messages being sent and
received.

4.4 Sample application
The SetPoint framework was tested by adding unexpected

requirements to an application developed a year before starting
our work on aspect-oriented programming. The application
consisted of a traditional Senku game; its architecture was
devised as simple model-view components that communicate

Original
component

Preprocessing

Preweaving

Semantication

“Aspectualizable”
Assembly

Configuration building

SetPoint

Engine

Execution environment

join points

Aspects, pointcuts,
advices, triggers &

ontologies
Aspects,

pointcuts,
advices &

inference rules

Ontologies

Compilation Setpoint
Configuration

Assembly

5

with each other through events/method calls. The new (non-
functional) requirements involved were as follows:
1. Logging all the messages sent between objects that belong

to the Model component and objects that belong to the View
component.

2. Caching some specific calculations made during the game,
involving possible movements.

3. Distributing the Model and View components into different
OS processes.
The Senku code was to be altered only by adding the

corresponding annotations relating the source code to the defined
semantic models. To achieve this, a reference to the namespace
that defined the semantic annotations had to be manually added2.

The semantic models defined using RDF/OWL include the
previously mentioned Architectural view, an “Information” view,
which in our case was useful to know which messages were
referentially transparent, and a “Game” view, which describes
properties intrinsic to a game, such as which messages imply the
beginning of a new game. The Code view was also used to define
the necessary pointcuts.
The following LENDL code applies the intended aspects to the
Senku game:
declare architecture alias
semantics://perspectives/architecture;

/************************************/
/* Logging Aspect */
/************************************/
pointcut ViewToModelMessages{
 sender is [architecture#view];
 receive is [architecture#model];
}
aspect LoggingAspect{
 event startLogging;
 event endLogging;
}
advice LogEvents : LoggingAspect{
 trigger startLogging before {ViewToModelMessages};
 trigger endLogging after {ViewToModelMessages};
}

/************************************/
/* Caching Aspect */
/************************************/
pointcut ReferentiallyTransparentMessages{
 message is
 semantics://perspectives/
 information#referentiallyTransparent];
}
pointcut GameBeginningMessages{
 message is
 [semantics://perspectives/functional#startGame];
}
aspect CachingAspect{
 event lookUp;
 event flush;
 event afterLookUp;
}
advice CacheMessages : CachingAspect{
 trigger lookUp before
 {ReferentiallyTransparentMessages};
 trigger afterLookUp after
 {ReferentiallyTransparentMessages};
 trigger flush after {GameBeginningMessages};
}

/************************************/
/* Distribution Aspect */
/************************************/
pointcut ModelObjectsCreationMessages{
 sender is [architecture#view];
 receiver is [architecture#model];

2 Adding this reference will not be necessary in further versions.

 message [rdf#type] [cts#Constructor];
 receiver [cts#isDelegate] [cts#false];
}
aspect DistributionAspect{
 event createRemoteObject;
}
advice DistributeComponents : DistributionAspect{
 trigger createRemoteObject before
 {ModelObjectsCreationMessages};

The experiment was successful: the aspects were applied without
the need to make any additional changes to the Senku code3.

5. CONCLUSION
The SetPoint framework was successfully used to add

distribution, performance and logging requirements to a Senku
game by developers who were oblivious of the later addition of
aspects to the code they had written. It was a good first attempt
towards the construction of a semantics-based AOP framework.
Nevertheless, the framework is still in its early stages;
indispensable improvements need to be made in order to reach
an industrial-strength tool:

• Access to Context: It would come in useful to predicate about
join points that have already been executed (i.e. being able to
refer to the call stack), as well as having access to other
contextual elements, such as message parameters or globally
accessible variables. Needless to say, we aim at approaching
this subject under the very same principles that have guided us
so far: quantification and obliviousness as a means to achieving
decoupling. The goal will then be to avoid code structure-based
context access (e.g. log both the method’s first parameter and
returning value, only when they’re both unsigned integers),
most probably by referring to the intermediate semantic layer
defined so far.

• Reliabilty: The framework must be tested with a larger set of
applications, to ensure that the preweaving and semantication
processes work flawlessly on every single case.

• Performance: Performance issues were not prioritized in this
first version, but they will undoubtedly be a priority in further
releases (it is important to note that, despite not much attention
was payed to this item, the test application worked within quite
acceptable response levels).

• IDE and Development Tools: Better tools must be offered to
software developers in order to facilitate their work. These
tools include integration with current environments, debuggers,
etc…

• Join Point Model: Despite message sends and receives would
seem as the proper join points in a pure object-oriented
environment, other primitive instructions should be considered
in a hybrid platform like .NET. Exception handlers and
assignments are some examples.

3 Actually, the Senku classes were modified in order to apply the

distribution aspect, but just because of .NET remoting needs,
not because a need of the AOP environment.

6

6. ACKNOWLEDGMENTS
We thank very much Diego Garbervetsky and Víctor

Braberman for their valuable comments on the paper.

7. REFERENCES
[1] R. Filman and D. Friedman. Aspect-oriented programming

is quantification and obliviousness. In OOPSLA Workshop
on Advanced Separation of Concerns, Minneapolis, USA,
October 2000.

[2] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V.
Lopes, J. M. Loingtier, and J. Irwin. Aspect-oriented
programming. Proceedings European Conference on Object-
Oriented Programming (ECOOP’97), pages 220–242,
Finnland, June 1997. LCNS 1241, Springer-Verlag.

[3] On the Existence of the AOSD-Evolution Paradox, Tom
Tourwe, Johan Brichau, Kris Gybels. In AOSD 2003
Workshop on Software-engineering Properties of Languages
for Aspect Technologies, 2003

[4] R. Johnson. The dynamic object model architecture. Only
available at http://st-
www.cs.uiuc.edu/users/johnson/papers/dom/

[5] Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides,Design Patterns: Elements of Reusable Object-
Oriented Software, Addison-Wesley, 1995

[6] Kent Beck, Smalltalk Best Practice Patterns. Prentice Hall,
1996.

[7] Shimon Rura, Refactoring Aspect-Oriented Software. Bsc.
Thesis, Williams College, 2003.

[8] Niels Christaensen, Domain specific language in software
development, and the relation to partial evaluation. PhD.
Thesis, University of Copenhagen, 2003,

[9] Thomas Gruber, Toward Principles for the Design of
Ontologies Used for Knowledge Sharing. International
Workshop on Formal Ontology, 1993

[10] http://www.w3c.org/2001/sw/WebOnt
[11] http://www.w3c.org/RDF/

[12] Tim Berners-Lee, James Hendler y Ora Lassila, The
Semantic Web, Scientific American, 2001

[13] http://codeworker.free.fr/
[14] http://www.openrdf.org/doc/users/ch06.html
[15] http://www.plas.fit.qut.edu.au/perwapi/Default.aspx
[16] http://www.openrdf.org
[17] www.ikvm.net

http://www.cs.uiuc.edu/users/johnson/papers/dom/
http://www.w3c.org/2001/sw/WebOnt
http://www.w3c.org/RDF/
http://codeworker.free.fr/
http://www.openrdf.org/doc/users/ch06.html
http://www.plas.fit.qut.edu.au/perwapi/Default.aspx
http://www.openrdf.org
http://www.ikvm.net

